(Joe Perfect)

Practice Test - Chapter 7 Periodic Properties of the Elements

Target 1: I can explain how the periodic table was developed.

 Why did Mendeleev leave blank spaces on his periodic table? a. Not all elements in the same family have similar properties. b. Not all elements in the same row have similar properties. c. There were more metals than nonmetals discovered at the time. d) He guessed that there were some elements yet undiscovered. e. Most elements on the periodic table are solids at room temperature.
Our current periodic table is arranged according to increasing a. atomic mass b atomic number c. mass number d. isotopic number
Target 2: I can list and explain the periodic trends associated with atomic size and ionic size.
3. Of the following, which gives the correct order for the atomic radius for Mg, Na, P, Si and Ar? a. Mg > Na > P > Si > Ar b. Ar > Si > P > Na > Mg c. Si > P > Ar > Na > Mg Na > Mg > Si > P > Ar e. Ar > P > Si > Mg > Na
4. The elements in which of the following have most nearly the same atomic radius? a. Be, B, C, N — this is next best answer and you could argue be. C, P, Se, I that it is correct. Ne, Ar, Kr, Xe Cr, Mn, Fe, Co — Transition elements most similar in size. (generally) e. Mg, Ca, Sr, Ba
5. In which of the following atoms is the 1s orbital the smallest? a. Cl b. F c. Br d. D e. The 1s orbital is always the same size!
Has more pt in nucleus will "pull in
the 1s orbital more effectively than the rest.

 a. An oxygen atom is slightly bigger than a nitrogen atom because an atom of oxygen has more electrons than nitrogen. b. An atom of chlorine is bigger than an atom of fluorine because chlorine has more energy levels and more shielding effect. c. An atom of calcium is bigger than an ion of calcium (Ca²⁺) because a calcium atom has more energy levels and more shielding effect. d. The nitride ion (N³⁻) is bigger than the nitrogen atom as the nitride ion has more energy levels.
e. The oxide ion (O^2) and the fluoride ion (F) are the same size as they have the same number of electrons and the same number of energy levels.
Target 3: I can list and explain the periodic trends associated with the reactivity of metals and nonmetals.
7. Which element below is more reactive than lithium and magnesium but less
reactive than potassium? a. Na b. Rb c. Cs d. Be e. Fr
8. Which two of the following do not correctly rank the elements in order from most reactive to least reactive? a. O, C, Si b K, Rb, Na c. Na, Al, Au d Br, Cl, F e. N, P, Ne
9. Which one of the following is the reason why Rb is more reactive than Sr? (a) Rb has less protons in the nucleus. Since Sr has more pt it pulls its e- more b. Rb is larger and thus has a greater effective nuclear charge. c. Sr has a smaller first ionization energy and a greater nuclear charge. d. Sr has a smaller first ionization energy and a greater effective nuclear charge.
e. Sr has a greater electron affinity due to a greater shielding effect.
 10. Why is oxygen more reactive than sulfur? Choose all that apply. a. Oxygen has less protons in its nucleus. b. Oxygen is smaller and therefore has less shielding effect. c. Oxygen experiences less electron:electron repulsions among its valence electrons. d. Oxygen is a slightly larger atom and therefore can attract e- more easily.
e. Oxygen has 2 common allotropes, O_2 and O_3 .
11. Which of the following statements is/are TRUE? a. Gold is one of the most reactive elements on the periodic table. b. Smaller metals tend to be more reactive than larger metals.

c. Transition metals are generally more reactive than 2A metals.

d. Argon is slightly more reactive than neon. e. You would expect a reaction to occur between $Cl_2(g)$ and NaBr(aq).

Cla + NaBr - D Nacl + Brz (ci is more reactive than Bu)

Target 4: I c	an list and exp	plain the per	iodic trends a	associated w	th ionization
	includes expl				

12.			wing arrangem			
	a. Na 🤄	< Rb (b. C <	< N) c. Cl <	S d. S < '	Te e. He <	Н
13.	is an exce that oxyg a. nitr b. ther c. ther d. nitr elect e)nitr	eption to this en has a lowe ogen is a large is more shi e is less shiel ogen has more trons	enerally increas trend with reg er first ionization er atom than of delding effect in national re electron-elections	ards to nitroge on energy than xygen nitrogen itrogen ctron repulsion	en and oxygen. nitrogen is that a strong is the a strong is due to the parts of the parts.	The reason at
1 /	Which on	a of the follow	wing elements l	has the largest	second ioniza	tion anargy?
14.	a. Na	b. Mg	_	d. Si	e. P	cion energy:
		2.1.2	,	3 2.		
15.		•	g data regardin	g the first six i	onization ener	gies (kJ/mol)
	of a parti	cular period 3	3 element:			
IE ₁	= 1012	IE ₂ =1900	$IE_3 = 2910$	$IE_4 = 4960$	$IE_5 = 6270$	$IE_6 = 22.200$
IE ₁	= 1012	IE ₂ =1900	$IE_3 = 2910$	$IE_4 = 4960$	$IE_5 = 6270$	$IE_6 = 22,200$
, gi ^s growt eeste, j		$IE_2 = 1900$		<i>1</i>	$IE_5 = 6270$	IE ₆ = 22,200
, gi ^s growt eeste, j				IE ₄ = 4960 d. Cl	IE ₅ = 6270	IE ₆ = 22,200
The	e identity a. Si	of this elemen	nt is c. P	d. Cl	e. Mg	
The	e identity a. Si	of this elemen	nt is	d. Cl	e. Mg	
The	e identity a. Si get 5: I ca	of this elemen b. S	nt is c. P e variations in e	d. Cl electron affiniti	e. Mg es among the	elements.
The	e identity a. Si get 5: I ca	of this elemen b. S	nt is c. P	d. Cl electron affiniti	e. Mg es among the	elements.
The Tar	e identity a. Si get 5: I ca Which of a. S	of this elements. Some explain the the following b. Cl	c. P e variations in e g elements has c. Se	d. Cl electron affiniti the most exoth d. Br	e. Mg es among the electron e. C	elements.
The Tar	e identity of a. Si Teget 5: I ca Which of a. S Which of	of this element b. S on explain the the following b. Cl	nt is c. P e variations in e g elements has c. Se g correctly repr	d. Cl electron affiniti the most exoth d. Br	e. Mg es among the electron e. C	elements.
The Tar	e identity of a. Si Teget 5: I ca Which of a. S Which of	the following the following the following Br(g) → Br	c. P e variations in e g elements has c. Se g correctly repre-+(g) + e-	d. Cl electron affiniti the most exoth d. Br	e. Mg es among the electron e. C	elements.
The Tar	e identity of a. Si Teget 5: I ca Which of a. S Which of	of this element b. S on explain the the following b. Cl	c. P e variations in e g elements has c. Se g correctly repre-+(g) + e-	d. Cl electron affiniti the most exoth d. Br	e. Mg es among the electron e. C	elements.
The Tar	e identity of a. Si Teget 5: I ca Which of a. S Which of	the following Br(g) → Br Br(g) + e-	c. P e variations in e g elements has c. Se g correctly repre-+(g) + e-	d. Cl electron affiniti the most exoth d. Br	e. Mg es among the electron e. C	elements.
The Tar	which of a. S. Which of a. S. Which of	of this elements b. S an explain the the following b. Cl the following Br(g) \rightarrow Br Br(g) + e- Br ₂ (g) + e-	c. P e variations in e g elements has c. Se g correctly repr +(g) + e- Br-(g)	d. Cl electron affiniti the most exoth d. Br resents the elec	e. Mg es among the electron e. C	elements.
The Tar	which of a. S. Which of a. S. C.	of this elements b. S an explain the the following b. Cl the following Br(g) \rightarrow Br Br(g) + e- Br ₂ (g) + e-	c. P e variations in e g elements has c. Se g correctly represent(g) + e- Br-(g) Br-(g)	d. Cl electron affiniti the most exoth d. Br resents the elec	e. Mg es among the electron e. C	elements.

 18. Some elements (such as neon) have a positive electron affinity. The positive electron affinity of neon indicates that a. the Ne⁻ ion is unstable and does not readily form. b. the Ne⁻ ion is stable and will easily form. c. neon is a gas at room temperature. Gaseous atoms do not accept electrons. d. neon has a greater electron affinity than ionization energy. e. neon has an orange flame test.
Target 6: I can describe the periodic trends in metallic and nonmetallic behavior.
19. Of the elements below, is the most metallic. a. sodium b. barium c. magnesium d. calcium e. esium
20. Metals can be at room temperature. a. liquid only b. solid only c. solid or liquid Au saids except Ha d. solid, liquid, or gas e. liquid or gas
21. Which TWO statements below are true statements? (a) Metallic character generally increases down a family and decreases from left to right across a period. (b) Metal oxides are basic. (c) Nonmetals are generally lusterous and are poor conductors. (d) Compounds composed entirely of nonmetals are usually ionic compounds. (e) Aluminum and silicon are examples of metalloids.
22. The series that correctly lists from left to right a halogen, an alkaline earth metal, a transition metal, and an active metal is a. Cl, K, V, Mg Br, Ba, Cr, Na c. O, Ca, Ce, Al d. F, Sr, Fe, Sn e. S, Sr, Si, Sn

Target 7: I can describe the general physical and chemical behavior of the alkali metals and the alkaline earth metals. I can also explain how their chemistry relates to their position in the periodic table.

	more reactive th			-	th the formula MCI ₂ . It is	
	a. Sr	b. K	c. Na	d. Ra	e. Al	
	u. 51	D. IX	C. IVU	a. Ra	C. 711	
24.	Which of these	oxides is the m	nost basic?			
	a. K ₂ O	b. Al ₂ O ₃	c. CO ₂	d. MgO	e. N ₂ O ₃	
25.	Which of the fol	lowing is the l	least reactive?			
	a. Mg	b. Sr	c. Ca	d. Ba	e. Cs	
26.	Why is calcium	more reactive	e than magnes	ium?		
	a. Calcium ha more tight	-	ns in its nucle	us and there	fore holds its electrons	
	•	-	s in its nucleus	s and therefo	ore holds its electrons	
	more wea	•				
			periences moi	e shielding	effect and therefore loses	
		e electrons mo	•	J		
				ss shielding	effect and therefore loses	
		e electrons mo				
	e. Magnesiui	m is actually m	nore reactive t	han calcium	•	
act	ive metals (1A a				le reactions between the he equations between	
act						
act me	ive metals (1A and tals and water.	nd 2A) and no	nmetals. I can	also write t	he equations between	
act me	ive metals (1A and tals and water. Which one of the	nd 2A) and no	nmetals. I can	also write t		
act me	ive metals (1A and tals and water. Which one of the reacts with wat	nd 2A) and no	nmetals. I can	ways produc	he equations between	
act me	ive metals (1A and tals and water. Which one of the	nd 2A) and no	nmetals. I can	also write t	he equations between	
act me 27.	ive metals (1A and tals and water. Which one of the reacts with water. A. NaOH The metal calciunate one of the follows.	nd 2A) and no ne following su ter? b. H ₂ O um reacts with wing statemer	nmetals. I can ubstances is alc. CO_2	ways produced. H ₂	he equations between	
act me 27.	which one of the reacts with water. The metal calcium one of the follow oxygen and calcumpted to the source of the follow oxygen and calcumpted to the follow oxygen and calc	nd 2A) and no ne following succer? b. H ₂ O um reacts with wing statemer	nmetals. I can ubstances is alc. CO_2	ways produced. H ₂	the equations between $\frac{1}{2}$ ced when an active metal $\frac{1}{2}$ e. $\frac{1}{2}$ a compound. Which	
act me 27.	which one of the reacts with water. Which one of the reacts with water. The metal calcium one of the following of the following a. Its formulations is the second of the formulations of the formulations is the second of the formulations of the formulations is the second of the formulations of the second of t	ne following surer? b. H ₂ O Im reacts with wing statemer ium? la is CaO.	nmetals. I can ubstances is al c. CO ₂ n molecular ox nts is false rega	ways produced. H ₂	the equations between $\frac{1}{2}$ ced when an active metal $\frac{1}{2}$ e. $\frac{1}{2}$ a compound. Which	
act me 27.	which one of the reacts with wat a. NaOH The metal calciu one of the follow oxygen and calcub. Its formula b. It is an ion	nd 2A) and no ne following succer? b. H ₂ O nm reacts with wing statemer sium? la is CaO. nic compound	nmetals. I can ubstances is al c. CO ₂ n molecular ox nts is false rega	ways produced. H ₂	the equations between $\frac{1}{2}$ ced when an active metal $\frac{1}{2}$ e. $\frac{1}{2}$ a compound. Which	
act me 27.	which one of the reacts with water. Which one of the reacts with water. The metal calcium one of the follow oxygen and calcumpted a. Its formulab. It is an ionic. It is a solice.	ne following sucer? b. H ₂ O Im reacts with wing statementium? la is CaO. nic compound dat room tem	nmetals. I can ubstances is al c. CO ₂ n molecular ox nts is false rega . perature.	ways produced. H ₂ ygen to formarding the co	ced when an active metal e. O_2 n a compound. Which empound containing	
act me 27.	which one of the reacts with water. Which one of the reacts with water. The metal calcium one of the following of the following oxygen and calcium oxygen and calcium of the formula of the following oxygen and calcium of the following oxygen and calcium oxygen oxygen and calcium oxygen	ne following surer? b. H ₂ O Im reacts with wing statemer ium? la is CaO. nic compound at room tem ded to acid, it is	nmetals. I can ubstances is al c. CO ₂ n molecular ox nts is false rega	ways produced. H ₂ ygen to formarding the co	ced when an active metal e. O_2 n a compound. Which empound containing	
act me 27.	which one of the reacts with water. Which one of the reacts with water. Which one of the reacts with water. NaOH The metal calcium one of the follow oxygen and calcum oxygen and calcum oxygen and calcum of the follow oxygen and calcum oxygen oxygen and calcum oxygen oxygen and calcum oxygen oxyg	nd 2A) and no ne following succer? b. H ₂ O Im reacts with wing statementium? la is CaO. nic compound dat room tem ded to acid, it is led to water, in the led to water, in t	nmetals. I can ubstances is al c. CO ₂ n molecular ox nts is false rega . perature. reacts to produ	ways produced. H ₂ ygen to formarding the condict solution.	ced when an active metal e. O_2 n a compound. Which empound containing	

Ra	t	2	420	ー シ	Ba(out)2	t	4,
The same	É		C 10	4 200	Cult	ě	

	Da I	1100 110	-46111	112	
	he coefficient of wal? (Balance with wals) + H20	hole number			mpleted and
a. 1	b. 2	c. 3	d. 4	e. 5	
a. Be b. Mg c. Ca d. Ba				ater or with	steam?
		$ \begin{array}{ccc} \bullet & \text{MO2(s)} \\ & \rightarrow & \text{2 MOH} \\ & \rightarrow & \text{2 MH(s)} \\ & \rightarrow & \text{2 MCl(s)} \end{array} $	ool "M" represo Should I(aq) + H2(g S)	ents any on be H_2O	
fireworks	ents could b s. or Ba b) Cu		oduce a red or r, or Li d)		
Target 9: I ca	an list the properti	es of hydroge	n and oxygen.		
a. N	ne of the following b. 0	c. Fe	d. Cl	е. Н	
34. Which of a. 0^{1}	the following is th	ie peroxide io		e. 0 ³ -	

c potassium superoxide d. potassium hydroxide

35. KO₂ is called _____

a. potassium oxide b. potassium peroxide

Target 10: I can list the properties of the halogen family and the noble gas family.

36. Which one of the following characteristics is common to elemental sulfur, chlorine, nitrogen, and carbon? a. They are gaseous elements at room temperature. They have oxides that form acids when added to water. c. They form ionic oxides. d. They react readily with hydrogen at room temperature.
37. Which one of the following statements concerning the characteristics of the halogens is false? a. The first ionization energies decrease as the atomic numbers of the halogens increase. b. Fluorine is the best oxidizing agent. c. Fluorine atoms have the smallest atomic radii of the halogens. d lodine liberates free bromine from a solution of bromide ions. e. The halogens have the most exothermic electron affinities of all families. This reaction will not the solution is bigger than sodium. This is because a. chlorine is more apt to exist as an anion than sodium. This is because a. chlorine has a greater ionization energy than sodium c. chlorine has a greater electron affinity than sodium c. chlorine is a greater electron affinity than sodium c. chlorine is a greater electron affinity than sodium c. chlorine is a greater electron affinity than sodium
d. chlorine is a gas and sodium is a solid e. chlorine is more metallic than sodium 39. Which element is a solid at room temperature? a. Cl2 b. F2 c. Br2 d. I2 e. H2
40. Of the hydrogen halides, only is weak acid. a. HCl b. HBr c. HF d. HI e) They are all weak acids. 41. List the noble gases that are known to form compounds: Ar, Kr, Ke
42. Name the halogen! a) Which halogen is rare and radioactive?
b) Which halogen has more industrial uses than any others?
c) Which halogen is a liquid at room temperature?
d) Which halogen, as an ion, strengthens your teeth?
e) Which halogen is added to water in order to produce a dissinfectant?

- (a) Nonmetals (such as halogens) have high first ionization energies & high/negative/exothermic e-affinities. Nonmetals hold onto their e-relatively strongly due to their smaller size & greater Zeff than their same period metal counturparts. For the same reasons, non metals tend to attract e-into its valence shell easily (exothermic e affinity).
 - (b) The NOBLE GASES are an exception. They do have a high IE, but do not have a high affinity to take on e.
- - (a) The reason why I, & Iz are lower for Ca than Ar is that Ca does not hold onto its valence e- as tightly. There are 2 reasons (possibly more!) for this:
 - 1- Ca experiences more shielding effect
 - 2- Ca valence e- ave farther from nucleus
 - 3- Ar has a particularily stable e-configuration (octot)
 - (b) Removing the 3rd e-from Ca is much more difficult than removing the first 2e- (4s2) experience a much greater shield effect (the 18 core e-) than removing an e-from n=3 shew (only 10 core e-). You do not to

26 continued...

see as dramatic of a jump between $I_2 \not\in I_3$ for Ar as the e-are being removed from n=3 snew... the Shielding effect is the SAME for both $I_2 \not\in I_3$.

- 3) a) Be 152252 } Be experiences a greater Zect due Li 15225' } to more pt in nucleus. (stieroing Effect is same for both!)
 - (b) F 1522522p5 C1 is bigger due to...

 C1 1522522p63523p5 C1 is bigger due to...

 (A) it contains I more energy level,

 (B) it's valence e- experience

 More Shielding effect
 - (C) Ag: [Kr] 55' 4d' } Even though Au has an extra

 Au: [Xe] bs' 4f" 5d" } energy shell (which is why you

 would think it is sig. larger),

 Au has 79 pt & Ag only has 47pt. Au has a much

 greater nuclear charge than Ag! This much higher

 nuclear charge practically offsets the fact that gold

 was an extra energy shell.

- (4) SHIELDING EFFECT=D the blocking of the pull of the nucleus on its valence e- by its core (inner) e-.
 - (a) The greater the shielding effect, the smaller the I.E.
- (b) Metals react by LOSING e-Porming positive ions.

 Metals with greater shielding effect (Bib METALS) tend to be more reactive as the nucleus cannot pull on its valence e- as strongly.
- (c) Nonwetals peach by Edining e-forming anions. Nonmetals with small shielding effect are more reactive as they are better able to attract e-
- Hom: (52 (2=1) The How is bigger as its test the atom: 152 (2=2) Is small due to having 1 less pt in nucleus. (Shielding effect Same in each particle.)

(6) Given:

X(s) colorless

X+02-06AS

X + Hro-s Acioic

Answer:

- · surfur as a solid is yellow (see fig. 7.16 p. 267)
- · Si + Oz SiOz (sand!) solid
- · C(diamond) + Oz -> COz (g) colorless
- · P has 3 allotropes... all coloved.
- · B is BLACK Solid

BEST GUESS ... CARBON!

- (7) (a) Br2 + 2 NaI -D 2 NaBr + I2 NIE: Br2 + 2I -D 2Br + I2
 - (b) 2 Rb + H2 -D 2 RbH
 - (C) Be + thro-to no reaction; Be is the one 2A which does not react with thro
 - (d) Iz + Nacl -D no reaction (I is less reactive than ci)
 - (e) CO2 + 2 NaOH Na2CO3 + H2O NIE: CO2 + 2 OH - D CO32 + H2O (assuming NaOH is agreeous!)
 - (F) Brz + Nacl -D no reaction (Br is less reactive than CI)
 - (g) MgO +2HCl -> MgCl2 + H2O NIE: MgO + 2H+ -> Mg2+ + H2O
 - (h) Cl2 + 2 NaBr -D 2 Nacl + Br2 NJE: Cl2 + 2 Br -D 2 Cl- + Br2

- (i) Naro + Hro -> 2 NaOH

 NIE: Naro + Hro -> 2 Nat + 204-
- (j) 2 Na + 2 H20 -> 2 NaOH + Hz NEE: 2 Na + 2 H20 -> 2 Na+ 20H-+ Hz