	Practice Test - Chapter 9 Name Molecular Geometry and Bonding Theories Date Period I. MULTIPLE CHOICE: Circle the letter that best completes each statement below. No calculators are allowed on this Practice Test!
	Target 1: I can determine the bond angle, geometric shape and the electron domain shape of a molecule or ion based upon the V.S.E.P.R. Theory.
3	1. Which of the following has a nonbonding pair of electrons on the central atom? a. BCl ₃ b. NH ₃ c. CCl ₂ Br ₂ d. PF ₅ e. SO ₄ ²⁻
=	2. What is the approximate C-O-H bond angle in CH ₃ OH? a) 180° b) 120° c) 109.5° d) 90° (e) 105°
D	3. Which one of the following may we draw both polar and nonpolar Lewis structures? a. CHCl3 b. NH3 c. BF3 d) SF2Cl4 e. SO2
)	 4. Which one of the following is NOT a linear structure? a. I₂ b. I₃ c. CO₂ d. H₂S e. H - C ≡ C - H
A	5. The Lewis structure of the cyanide ion most closely resembles which of the following? a. N ₂ b. O ₂ c. CO ₂ d. NO e. C ₂ H ₂ CEN 6. Which angle is NOT expected in any molecule? 4-CEC-H
*	6. Which angle is NOT expected in any molecule? a. 60° b. 90° c. 109.5° d. 120° e. All of these are reasonable angles.
	Target 2: I can explain why nonbonding electron domains exert a greater repulsive interaction on other domains than do bonding electron domains.

c. PH₃

b. H₂O

 $d. SO_2$

e. CH₄

a. BH₃

Target 3: I can predict from the shape of a molecule whether it is polar or nonpolar.H Which of the bonds below is the most polar? (Review from Chapter 8) C Element Si H S 0 electronegativity 1.8 2.1 2.5 2.5 3.5 3.0 a. C - Si b. C - N (c. O - C) d.S-CH - C How many of the molecules below are polar. (Circle answers that are polar!) BH₃ b. H₂O c. PH₃ a. $d. SO_2$ e. CH₄ 10. Which one molecule below will have a zero dipole moment? NH_3 b. NO₂ a. c. HCN d. SO₂ e. PF₅ Target 4: I can explain the concept of hybridization and its relationship to geometrical structure.

Target 5: I can predict the type of hybrid orbitals of an atom in a molecule.

11. The SF₅ ion has a square pyramid structure. The hybridization of the orbitals in sulfur is:

a. dsp³

 $\begin{array}{ccc}
b. & sp \\
\hline
c. & d^2sp^3 \\
d. & sp^3
\end{array}$

e. sp²

12. In which of the following pairs are the two items NOT properly related?

a. sp³ and 109.5°

b. trigonal planar and 120°

octahedral and dsp³

d. sp and 180°

e. spare planar and d^2sp^3

A 13. Sulfur forms the following compounds: SO₂, SF₆, SCl₄, SCl₂. Which form of hybridization is NOT represented by these molecules?

a. sp

b. sp^2

c. sp³

d. dsp^3

e. d^2sp^3

Target 6: I can explain the difference between a sigma bond and a pi bond. I can also determine the number of sigma bonds and pi bonds in a molecule or ion.

14. For # a - f, identify which statements below is a characteristic of a pi (p) or a sigma (s) bond. Solution = 5 a. Formed by the head-to-head bond between atoms.
b. Formed above and below the bond axis.
c. A triple bond would contain two of these.
d. This bonding occurs from the sideways overlap of an electron in p orbitals.
e. A triple bond would contain two of these.
э
15. Which of the following has the fewest pi bonds and is nonpolar?
a. HCCH b. CO2
© CO ₃ ² ·
d. N2
e. SO2
16. Which one of the following is true when the C = C and CZO is 1
16. Which one of the following is true when the C = C and CEC bonds are compared? The triple bond is shorter than the double bond.
The triple bond is shorter than the double bond. b. The double bond contains more pi bonds.
c. The double-bond energy is higher than the triple-bond energy.
d. The double bond contains less sigma bonds.
Target 7: I can explain what delocalized electrons and the significance of a structure having
delocalized electrons mean.
人。对1 5年的15年的15年的15年15年15年15年15日,15年15年15日,15年15年15日,15年1
17 Circle the following statements helevesthesis (and) and 1 to 12 to 1
17. Circle the following statements below that is(are) true about delocalized electrons. This amayoccur when structures have resonance of a double bond.
Benzene possesses delocalized which increase the strength of the bonds and elevates its
boiling point.
They "stabilize" the moléule.
They are associated with pi bonding.They are assicatiated with sigma bonding.

A

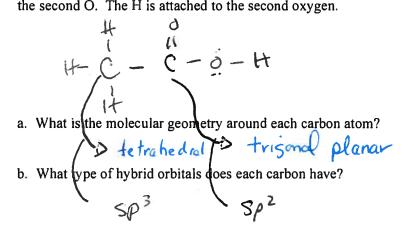
ABCD

<u>I. FREE RESPONSE:</u> Complete each of the following free response questoins kin the spaces provided.

- 1. Answer the following questions about XeO_3 and XeF_4 .
- a. Xenon can react with oxygen and fluorine to form compounds such as XeO_3 and XeF_4 . Draw the complete Lewis electron-dot diagram for each of the molecules represented below.

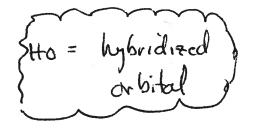
- b. On the basis of the Lewis electron-dot diagrams you drew for part (a), predict the following:
 - (i) The geometric shape of the XeO₃ molecule.

(ii) The hybridization of the valence orbitals of xenon in XeF4.


c. Predict whether the XeO_3 molecule is polar or nonpolar. Justify your prediction.

polar since lone pair of electrons on central

d. Explain why the CH₂F₂ molecule is polar, where the CF₄ molecule is not.


2. Daw the Lewis dot	structure for a nonn	olar molecule ti	hat has a molecu	lar formula o	r
$Si_2H_2Br_2$.					
	:By:	1	(trans)		
a. There are	_ sigma bonds and	pi bon	d(s) in this molec	cule?	
b. The hybridization a This molecule is nonpo					
c. Draw the two polar	isomers of this compo	und and indicat	e where the dipol	e is located.	
4.	Br:	į	H.	14	
,	si=si(+ →		$S_1 = S$	í	
	(G12) (G12) (G12)		Si = S : Br : t	· B. :	(615)
3. List all possible mo	lecular geometries whi	ich have sp ³ hyl	oridized orbitals.		
tel	vahedral;	trismal	pyramidal) + beni	t
4. Identify the molecu	lar shapes that are always	ays polar.		. 1	Salved AUCON
Bent(spi) Soz	lar shapes that are always Bent (Sp?) NH3 Substance	She-san	w T-Shapeo	1- 1 5	sp3d
5. <u>Boiling point</u> 231 K 355 K	C ₃ H ₈	•			
With the information a	CH ₃ CN bove suggest a reason	why CH ₃ CN ha	s a higher boiling	g point than C	.Н ₈
(Ch. II)	polar		3		D Nonpilar
6 Draw the structure i	for acetic acid (H ₃ C-C	OOH) below. T	hen answer the fo	ollowing two	

6 Draw the structure for acetic acid (H_3C -COOH) below. Then answer the following two questions. NOTE: The second carbon is double bonded to the first oxygen and single-bonded to the second O. The H is attached to the second oxygen.

9. The following chart reinforces the valence bond theory.

Molecule or Ion	Overlap of orbitals forming the sigma			
	bond between the central atom and the			
	bonded atoms around it			
PH ₃	(Ho)			
=	Sp3 on the P bonded			
	w an sorbitul antt			
SO ₂	spr (40) on the S banded			
	w/a partitul on O			
7/-				
HCN	14 A 11/L			
	Sp (Ho) on the C with			
	an sorbital on the H. and			
	an sorbital on the H. and			
	aparotel as the N			
	,			
PF ₅	Sp3d (Ho) on the Pwith			
	the p orbital on the F			
SCl ₄	Sp3d (HO) on the S with			
	a porbital on the CI			
	•			
XeFCl ₃	Sp3d2. Ho on the Xe			
	w/ a p orbital on			
	both the F X CI			

Na NO3 (ie)

- 7. Name a compound with both ionic and covalent bonds.
- 8. Name three elements which . . .
 - a) cannot have expanded octets when it is the central atom in a molecule.

b) do not need an octet to form stable compounds.

H, Be, B

Molecule or Ion	Structure	e- domain geometry	Molecular geometry or shape	Bonded / Nonbonded e- domains	Polar or Nonpolar	Hybridizaion	Bond Angle
РН3	1 1 1t-b-14 	Tetra	Tris	3/1	P	sp ³	107
SO ₂	:5=0 :0:	blow.	bent	2/1	P	5p2	117
HCN	H-CEN:	linear	1: real	40	P	SP	180
PF ₅	: F: F:	Pibac.	PiBdl Heid	5/0	NP	Sp3d	90/
SCI ₄	:C1:			4/,	P	Sp3d	applex 90°
XeFCl ₃ & + 2\$ 34	Xe:	octohedal	Square	4/2	P	sp3d2	90°

502 1 HCN 8. Identify any molecules above that has pi bonding?

10. Following is a integrative problem using the mole concept and Chapters 8 and 9.

- A compound consists of 61.70 %Cl 10.40 %C and 27.80 %5 by mass. Knowing this determine the following.
- a. What is the empirical formula(which is also the molecular formula) of this compound?

b. Draw the Lewis dot structure. (Note: Carbon is the central atom!)

- c. This molecule has ____3 sigma and _____ pi bonds.
- d. What is the hybridization around the carbon? \bigcirc