

Ouestion 6 (8 points)

(a) Response must clearly indicate (and distinguish between) E_{act} and ΔH_{rxn} on graph.

2 pts

I pt

- and whose slope changes continually.
 - No penalty if curve crosses time axis or levels out above time axis.
 - Curve must drop initially and continually. No credit earned if $[N_2O_5]$ increases.
 - ii. Reaction Rate is the slope of the line tangent to any point on the curve.

I pt

- Rate must be tied somehow to slope of graph.
- Answer may be indicated directly on the graph.
- Instantaneous rate must be indicated rather than the average rate.
- iii. Since "rate = slope = $k[N_2O_5]$ ", the value of k can be determined algebraically from the slope at a known value of [N2O5].

- No penalty for "Rate = $2k[N_2O_5]$ ", as reaction stoichiometry could suggest this answer.
- Point can be earned for rate constant = slope of graph of $ln[N_2O_5]$ vs. time since reaction is first order.
- Use of half-life or integrated rate law to solve for k can be accepted.
- iv. The value of the rate constant is independent of the reactant concentrations, so adding more reactant will not affect the value of k.

- No point earned for simply stating that value of k will not change.
- Response must distinguish between <u>rate</u> and <u>rate constant</u>.
- i. Rate = k[A] or $\ln ([A]/[A]_0) = -kt$. Since graph of $\ln [A] vs$, time is linear, it must (c) be a first-order reaction.

- Either form of the rate law is acceptable, and both the equation and the brief justification are required to earn the point.
- No point earned if response indicates first order because the first graph is not linear.
- ii. Determine the slope of the second graph and set "k = -slope."
 - Response must indicate both the negative sign and the slope.

I pt