Practice Test Chapter 17 Buffers, Titrations, K_{sp} <u>Part I:</u> Circle the letter of the best annswer(s). No calculators are allowed on the multiple choice portion of the practice test! ## Target 1: I can explain the Common Ion Effect and make associated calculations. - 1. The Common Ion Effect is defined as a(n) . . . - a. decrease in pH when an acid is added to a buffer solution which contains an acid with a greater K_a than the K_b of the conjugate base. - b. increase in pH when an acid is added to a buffer solution which contains an acid with a greater K_a than the K_b of the conjugate base. - c. decrease in the solubility of a strong acid when mixed with a weak base. - d. increase in the percent ionization of either a weak acid or a weak base upon the addition of a strong electrolyte containing an ion in common with the acid or base. - shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance - 2. What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride? - a. The concentration of hydronium ions will increase significantly. - b. The concentration of fluoride ions will increase as will the concentration of hydronium ions. - c. The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase. - The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase. - e. The fluoride ions will precipitate out of solution as its acid salt. ## Target 3: I can describe the shape and key features of titration curves involving both strong and weak acids and bases. - 8. An initial pH of 4.00, an equivalence point at pH 9.35, and a moderately short, nearly vertical middle section correspond to a titration curve for ______. - a. strong acid titrated by a strong base - b. strong base titrated by a strong acid - weak acid titrated by a strong base - d. weak base titrated by a strong acid - e. weak base titrated by a weak acid - 9. A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve below was obtained. The unknown compound is ______ (The pH = 8.10 at equivalence point.) - a. a strong acid - b. a strong base - a weak acid - d. a weak base - e. neither an acid nor a base # Target 4: I can calculate the pH at any point, including the equivalence point, in acid base titrations. - 10. The pH of a solution prepared by mixing 50.0 mL of 0.100 M NaOH and 40.0 mL of 0.100 M HNO3 is approximately_____. - a. 1.95 - 04- + H+ -- 0 - b. 4.87 c. 7.00 - (mol) I 0.005 0.000 - d. 9.13 **(e)** 12.05 - F 0,001 $$[0H^{-}] = \frac{0.001 \text{ mol}}{0.09L} = \frac{1 \times 10^{-3}}{9 \times 10^{-2}} \approx \frac{1}{10} \times 10^{-1} \text{ M oH}^{-} = 1 \times 10^{-2} \text{ M oH}^{-}$$ $$\approx poH = 2$$ $$\approx poH = 12$$ | a. 1.00 b. 3.15 O 7.00 c. There is not enough information to solve this problem. | |--| | 12. The pH of a solution prepared by mixing 8.00 liters of 0.100 M NaOH and 2.00 liters of 0.200 M HC ₂ H ₃ O ₂ is approximately (The K _a of HC ₂ H ₃ O ₂ is 1.8 X 10 ⁻⁵) a. 1.39 b. 5.28 OH - + HC ₂ H ₃ O ₂ - C ₂ H ₃ O ₃ - + H ₂ O | | 0. 5.28
c. 7.00 (ma) I 0.8
d. 9.03
C-0.4
OH = UX10-2M
POH = 2 | | Target 5: I can calculate K_{sp} from solubility data and solubility from the value of K_{sp} . | | 13. The Ksp expression for silver phosphate is a. $Ksp = [Ag^+][PO_4^{3-}]$ b. $Ksp = [Ag^+]^2[PO_4^{3-}]$ | | b. $Ksp = [Ag^{+}]^{2}[PO_{4}^{3-}]$
$Ksp = [Ag^{+}]^{3}[PO_{4}^{3-}]$
d. $Ksp = [Ag^{+}][PO_{4}^{3-}]^{3}$ | | e. $Ksp = [Ag^{+}][PO_{4}^{3-}] / [Ag_{3}PO_{4}]$ | | 14. The concentration of lead ions in a saturated solution of lead (II) sulfide is M. The solubility product constant of PbS is 3.0×10^{-28} . a. 3.0×10^{-9} b. 2.8×10^{-2} c. 9.0×10^{-56} d. 1.7×10^{-14} e. 3.0×10^{-28} | | 15. The solubility of manganese (II) hydroxide is 2.2×10^{-5} M. What is the Ksp of Mn(OH)2? a. 1.1×10^{-7} 4.3 × 10-14 c. 2.1×10^{-21} d. 4.8×10^{-10} e. 2.2×10^{-5} (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) (Sp = (2.2×10^{-5})(4.4×10^{-5}) | | | 11. Assume you added enough 0.30 M HCl to neutralize a certain volume of 0.10 M KOH. What is the approximate pH at equivalence point? 16. Of the compounds listed in the table below, _____ is the least soluble. compound 8.0 X 10⁻²⁷ CdS 6.3 × 10-36) > The smaller the Ksp. CuS the less soluble the PbS MnCO₃ a. CdS € CuS c. PbS d. MnCO₃ e. The three sulfides are equally soluble, and all less than MnCO₃. Target 6: I can solve K_{sp} problems associated with the common ion effect and changes in pH. 17. What is the solubility of PbCl2 in a 0.15 M solution of HCl? The Ksp of PbCl2 is 1.6×10^{-5} . Phalolas = Phit + 201a. $2.0 \times 10^{-9} M$ b. $1.1 \times 10^{-14} \,\mathrm{M}$ $1.6 \times (0^{-5} = (\times)(0.15)^2 =$ c. $1.8 \times 10^{0} \text{ M}$ X=501. PLC12 = 1.6 ×10-5 (1.5×10-1) = 1.6 ×10-5 = 0.8 ×10-3 7.1 × 10-4 M e. 1.6 × 10⁵ M = YX10-4 18. In which aqueous system is Pbl2 least soluble? b. 0.50 M HI c. 0.2 M NaCl d. 1.0 M NaCl (©) 0.8 M KI a. H₂O Congreatest concer. of 門に(3) こ 162+ しま 19. The solubility of which one of the following will be least affected by the pH of L- shifts the solution? farthest to left! (e) KNO3 c. MnS d. CaCO3 a. Na₃PO₄ b. NaF (Le Chat's frin.) It is the only neutral saft. 20. Which of the following statement(s) is/are TRUE? (If you think there is more than one true statement, darken them all in!) a. The solubility of AgCl can be increased by the addition of a solution of decreuses NaCl. b. A solution of 0.1 M NaC2H3O2 and 0.001 M HC2H3O2 should act as a very effective buffer toward added base. The really low conc. of acid (c) The Henderson-Hasselbalch equation shows for a buffer solution that changing the total volume of the solution does not change the pH. (d.) The solubility of BaCO₃ will increase by the addition of a strong acid. 4 since it is basic salt, it will dissolve Well in an Acio!! ## Target 7: I can predict whether a precipitate will form when two solutions are mixed, given appropriate K_{sp} values. - 21. Equal volumes of 1.6×10^{-5} M KCl and 1.6×10^{-5} M AgNO₃ are mixed. The Ksp for silver chloride is 1.6×10^{-10} . As these two solutions are mixed . . . - a precipitate of AgCI forms. - b. there is no precipitate formed. - .c. NaCl will precipitate. - d. AgNO₃ will precipitate. - e. the [Na⁺] will become 0.020 M. Q = 2.5 K10-10 Q>K ... You get ppt!! <u>Part 2:</u> CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures. 1. Each of three beakers contains 25.0 mL of a 0.100 M solution of HCl , NH $_3$, or NH $_4$ Cl , as shown below. Each solution is at 25°C. Beaker 1: 25.0 mL of 0.100 M HCl Beaker 2: 25.0 mL of 0.100 M NH₃ Beaker 3: 25.0 mL of 0.100 M NH₄Cl - (a) Determine the pH of the solution in beaker 1. Justify your answer. - (b) In beaker 2, the reaction $NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$ occurs. The value of K_b for $NH_3(aq)$ is 1.8×10^{-5} at 25° C. - (i) Write the K_b expression for the reaction of NH₃(aq) with H₂O(l). - (ii) Calculate the [OH] in the solution in beaker 2. - (c) In beaker 3, the reaction $NH_4^+(aq) + H_2O(l) \iff NH_3(aq) + H_3O^+(aq)$ occurs. - (i) Calculate the value of K_a for $NH_4^+(aq)$ at 25°C, - (ii) The contents of beaker 2 are poured into beaker 3 and the resulting solution is stirred. Assume that volumes are additive. Calculate the pH of the resulting solution. - (d) The contents of beaker 1 are poured into the solution made in part (c)(ii). The resulting solution is stirred. Assume that volumes are additive. - (i) Is the resulting solution an effective buffer? Justify your answer. - (ii) Calculate the final [NH₄⁺] in the resulting solution at 25°C. - 2. Answer the following questions that relate to the solubility of salts lead and barium. - a) A saturated solution is prepared by adding excess PbI₂(s) to distilled water to form 1.0 liter of solution at 25°C. The concentration of the the Pb²⁺(aq) in the saturated solution is found to be 1.3 X 10⁻³ M. The chemical equation for the dissolution of PbI₂(s) is shown below: $$PbI_2(s) \iff Pb^{2+}(aq) + 2I(aq)$$ - i) Write the equilibrium constant expression. - ii) Calculate the molar concentration of the I (aq). - iii) Calculate the value of K_{sp}. - b) A saturated solution is prepared by adding PbI₂(s) to distilled water to form 2.00 liters of solution at 25°C. What are the molar concentrations of the Pb²⁺(aq) and I (aq)? Jusify your answer. - c) Solid NaI is added to a saturated solution of PbI₂ at 25°C. Assume that the volume of the solution does not change, does the molar concentration of the Pb²⁺(aq) increase, decrease, or remain the same? Justify your answer. - d) The value the K_{sp} of BaCrO₄ is 1.2 X 10⁻¹⁰. When a 500-mL sample of 8.2 X 10⁻⁶ M Ba(NO₃)₂ is added to 500. mL of 8.2 X 10⁻⁶ M Na₂CrO₄, no precipitate is observed. - i) Assume that the volumes are additive, calculate the molar concentrations of $Ba^{2+}(aq)$ and $CrO_4^{2-}(aq)$ in the 1.00 liter of solution. - ii) Using the molar concentrations of the Ba²⁺(aq) and CrO₄²⁻(aq) above, show why a precipitate does not form. You must include a calculation as part of your answer. - 3. A pure14.85 g sample of the weak base ethylamine, C₂H₅NH₂, is dissolved in enough distilled water to make 500. mL of solution. - (a) Calculate the molar concentration of the $C_2H_5NH_2$ in the solution. The aqueous ethylamine reacts with water according to the equation below. $$C_2H_5NH_2(aq) + H_2O(l) \iff C_2H_5NH_3^+(aq) + OH^-(aq)$$ - (b) Write the equilibrium-constant expression for the reaction between $C_2H_5NH_2(aq)$ and water. - (c) Of C₂H₅NH₂ (aq) and C₂H₅NH₃⁺(aq), which is present in the solution at the higher concentration at equilibrium? Justify your answer. - (d) A different solution is made by mixing 500. mL of $0.500 \, M \, C_2 H_5 N H_2$ with 500. mL of $0.200 \, M \, H Cl$. Assume that volumes are additive. The pH of the resulting solution is found to be 10.93. - (i) Calculate the concentration of OH (aq) in the solution. - (ii) Write the net-ionic equation that represents the reaction that occurs when the $C_2H_5NH_2$ solution is mixed with the HCl solution. - (iii) Calculate the molar concentration of the $C_2H_5NH_3^+(aq)$ that is formed in the reaction. - (iv) Calculate the value of K_b for $C_2H_5NH_2$. - 4. A sample of 0.1276 g of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0633 M NaOH. The volume of base required to reach equivalence point was 18.4 mL. - a) Calculate the molar mass of the acid. - b) After 10.0 mL of the base has been added in the titration, the pH was determined to be 5.87. What is the K_a of the unknown acid? ## AP® CHEMISTRY 2011 SCORING GUIDELINES #### Question 1 - 1. Each of three beakers contains 25.0 mL of a 0.100 M solution of HCl, NH₃, or NH₄Cl, as shown above. Each solution is at 25°C. - (a) Determine the pH of the solution in beaker 1. Justify your answer. $$pH = -log[H^+] = -log(0.100) = 1.000$$ 1 point is earned for the correct pH. - (b) In beaker 2, the reaction $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ occurs. The value of K_b for $NH_3(aq)$ is 1.8×10^{-5} at 25°C. - (i) Write the K_b expression for the reaction of $NH_3(aq)$ with $H_2O(l)$. $$K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]}$$ 1 point is earned for the correct expression. (ii) Calculate the [OH⁻] in the solution in beaker 2. Let $$[OH^-] = x$$, then $K_b = \frac{(x)(x)}{(0.100 - x)}$ Assume that $x << 0.100 M$, then $$1.8 \times 10^{-5} = \frac{x^2}{0.100} \implies x = [OH^-] = 1.3 \times 10^{-3} M$$ 1 point is earned for the correct answer. - (c) In beaker 3, the reaction $NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$ occurs. - (i) Calculate the value of K_a for $NH_4^+(aq)$ at 25°C. $$K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$ 1 point is earned for the correct answer. ## AP® CHEMISTRY 2011 SCORING GUIDELINES #### Question 1 (continued) (ii) The contents of beaker 2 are poured into beaker 3 and the resulting solution is stirred. Assume that volumes are additive. Calculate the pH of the resulting solution. In the resulting solution, $[NH_3] = [NH_4^+]$; $$K_a = 5.6 \times 10^{-10} = \frac{[\text{NH}_3][\text{H}_3\text{O}^+]}{[\text{NH}_4^+]}$$ Thus $$[H_3O^+] = 5.6 \times 10^{-10}$$; pH = $-\log(5.6 \times 10^{-10}) = 9.25$ 1 point is earned for noting that the solution is a buffer with $[NH_3] = [NH_4^+].$ 1 point is earned for the correct pH. - (d) The contents of beaker 1 are poured into the solution made in part (c)(ii). The resulting solution is stirred. Assume that volumes are additive. - (i) Is the resulting solution an effective buffer? Justify your answer. The resulting solution is not an effective buffer. Virtually all of the NH_3 in the solution formed in (c)(ii) will react with the H_3O^+ from solution 1: $$NH_3 + H_3O^+ \rightarrow NH_4^+ + H_2O$$ leaving mostly NH₄⁺ in the final solution. Since only one member of the NH₄⁺/NH₃ conjugate acid-base pair is left, the solution cannot buffer both base and acid. 1 point is earned for the correct response with an acceptable justification. (ii) Calculate the final [NH₄⁺] in the resulting solution at 25°C. moles = (volume)(molarity) moles H_3O^+ in sol. 1 = (0.0250)(0.100) = 0.00250 mol moles NH_3 in sol. 2 = (0.0250)(0.100) = 0.00250 mol moles NH_4^+ in sol. 3 = (0.0250)(0.100) = 0.00250 mol When the solutions are mixed, the $\rm H_3O^+$ and $\rm NH_3$ react to form $\rm NH_4^+$, resulting in a total of 0.00500 mol $\rm NH_4^+$. The final volume is the sum (25.0 + 25.0 + 25.0) = 75.0 mL. The final concentration of $NH_4^+ = (0.00500 \text{ mol/} 0.0750 \text{ L}) = 0.0667 M.$ 1 point is earned for the correct calculation of moles of NH_4^+ . 1 point is earned for the correct calculation of the final volume and concentration. ### AP® CHEMISTRY 2006 SCORING GUIDELINES #### Question 1 Answer the following questions that relate to solubility of salts of lead and barium. (a) A saturated solution is prepared by adding excess $PbI_2(s)$ to distilled water to form 1.0 L of solution at 25°C. The concentration of $Pb^{2+}(aq)$ in the saturated solution is found to be $1.3 \times 10^{-3} M$. The chemical equation for the dissolution of $PbI_2(s)$ in water is shown below. $$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$$ (i) Write the equilibrium-constant expression for the equation. $$K_{sp} = [Pb^{2+}][I^{-}]^{2}$$ One point is earned for the correct expression. (ii) Calculate the molar concentration of $I^-(aq)$ in the solution. By stoichiometry, $$[I^-] = 2 \times [Pb^{2+}]$$, thus $[I^-] = 2 \times (1.3 \times 10^{-3}) = 2.6 \times 10^{-3} M$ One point is earned for the correct concentration. (iii) Calculate the value of the equilibrium constant, K_{sn} . $$K_{sp} = [Pb^{2+}][I^{-}]^2 = (1.3 \times 10^{-3})(2.6 \times 10^{-3})^2$$ = 8.8×10^{-9} One point is earned for a value of K_{sp} that is consistent with the answers in parts (a)(i) and (a)(ii). (b) A saturated solution is prepared by adding $PbI_2(s)$ to distilled water to form 2.0 L of solution at 25°C. What are the molar concentrations of $Pb^{2+}(aq)$ and $I^{-}(aq)$ in the solution? Justify your answer. The molar concentrations of $Pb^{2+}(aq)$ and $I^{-}(aq)$ would be the same as in the 1.0 L solution in part (a) (i.e., $1.3 \times 10^{-3} \, M$ and $2.6 \times 10^{-3} \, M$, respectively). The concentrations of solute particles in a saturated solution are a function of the constant, K_{sp} , which is independent of volume. One point is earned for the concentrations (or stating they are the same as in the solution described in part (a)) and justification. #### AP® CHEMISTRY 2006 SCORING GUIDELINES #### Question 1 (continued) (c) Solid NaI is added to a saturated solution of PbI_2 at 25°C. Assuming that the volume of the solution does not change, does the molar concentration of $Pb^{2+}(aq)$ in the solution increase, decrease, or remain the same? Justify your answer. [Pb²⁺] will decrease. The NaI(s) will dissolve, increasing [I⁻]; more I⁻(aq) then combines with Pb²⁺(aq) to precipitate PbI₂(s) so that the ion product [Pb²⁺][I⁻]² will once again attain the value of 8.8×10^{-9} (K_{sp} at 25°C). One point is earned for stating that [Pb²⁺] will decrease. One point is earned for justification (can involve a Le Chatelier argument). - (d) The value of K_{sp} for the salt BaCrO₄ is 1.2×10^{-10} . When a 500 mL sample of 8.2×10^{-6} M Ba(NO₃)₂ is added to 500 mL of 8.2×10^{-6} M Na₂CrO₄, no precipitate is observed. - (i) Assuming that volumes are additive, calculate the molar concentrations of $Ba^{2+}(aq)$ and $CrO_4^{2-}(aq)$ in the 1.00 L of solution. New volume = $500 \cdot \text{mL} + 500 \cdot \text{mL} = 1.000 \, \text{L}$, therefore [Ba²⁺] in 1.000 L is one-half its initial value: $$[Ba^{2+}] = \frac{500 \text{ mL}}{1,000 \text{ mL}} \times (8.2 \times 10^{-6} M) = 4.1 \times 10^{-6} M$$ $$[\text{CrO}_4^{2-}] = \frac{500 \text{ mL}}{1,000 \text{ mL}} \times (8.2 \times 10^{-6} M) = 4.1 \times 10^{-6} M$$ One point is earned for the correct concentration. (ii) Use the molar concentrations of $Ba^{2+}(aq)$ ions and $CrO_4^{2-}(aq)$ ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer. The product $Q = [Ba^{2+}][CrO_4^{2-}]$ = $(4.1 \times 10^{-6} M)(4.1 \times 10^{-6} M)$ = 1.7×10^{-11} Because $Q=1.7\times 10^{-11}<1.2\times 10^{-10}=K_{sp}$, no precipitate forms. One point is earned for calculating a value of Q that is consistent with the concentration values in part (d)(i). One point is earned for using Q to explain why no precipitate forms. ## AP® CHEMISTRY 2009 SCORING GUIDELINES (Form B) #### Question 1 (10 points) A pure 14.85 g sample of the weak base ethylamine, $C_2H_5NH_2$, is dissolved in enough distilled water to make 500, mL of solution. (a) Calculate the molar concentration of the C₂H₅NH₂ in the solution. $$n_{\text{C}_2\text{H}_5\text{NH}_2} = 14.85 \text{ g C}_2\text{H}_5\text{NH}_2 \times \frac{1 \text{ mol C}_2\text{H}_5\text{NH}_2}{45.09 \text{ g C}_2\text{H}_5\text{NH}_2}$$ $$= 0.3293 \text{ mol C}_2\text{H}_5\text{NH}_2$$ $$M_{\text{C}_2\text{H}_5\text{NH}_2} = \frac{0.3293 \text{ mol C}_2\text{H}_5\text{NH}_2}{0.500 \text{ L}} = \mathbf{0.659} M$$ One point is earned for the correct number of moles. One point is earned for the correct concentration. The aqueous ethylamine reacts with water according to the equation below. $$C_2H_5NH_2(aq) + H_2O(l) \rightleftharpoons C_2H_5NH_3^+(aq) + OH^-(aq)$$ (b) Write the equilibrium-constant expression for the reaction between $C_2H_5NH_2(aq)$ and water. $$K_b = \frac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]}$$ One point is earned for the correct expression. (c) Of $C_2H_5NH_2(aq)$ and $C_2H_5NH_3^+(aq)$, which is present in the solution at the higher concentration at equilibrium? Justify your answer. $C_2H_5NH_2$ is present in the solution at the higher concentration at equilibrium. Ethylamine is a weak base, and thus it has a small K_b value. Therefore only partial dissociation of $C_2H_5NH_2$ occurs in water, and $[C_2H_5NH_3^+]$ is thus less than $[C_2H_5NH_2]$. One point is earned for the correct answer with justification. ### AP® CHEMISTRY 2009 SCORING GUIDELINES (Form B) #### Question 1 (continued) - (d) A different solution is made by mixing 500. mL of 0.500 M C₂H₅NH₂ with 500. mL of 0.200 M HCl. Assume that volumes are additive. The pH of the resulting solution is found to be 10.93. - Calculate the concentration of $OH^-(aq)$ in the solution. pH = $$-\log[H^+]$$ [H⁺] = $10^{-10.93}$ = 1.17×10^{-11} [OH⁻] = $\frac{K_w}{[H^+]}$ = $\frac{1.00 \times 10^{-14}}{1.17 \times 10^{-11}}$ = $8.5 \times 10^{-4} M$ OR $$pOH = 14 - pH = 14 - 10.93 = 3.07$$ $$pOH = -log[OH^{-}]$$ $$[OH^{-}] = 10^{-3.07} = 8.5 \times 10^{-4} M$$ One point is earned for the correct concentration. (ii) Write the net-ionic equation that represents the reaction that occurs when the C₂H₅NH₂ solution is mixed with the HCl solution. | The same of sa | $C_2H_5NH_2 + H_3O^+ \rightarrow C_2H_5NH_3^+ + H_2O$ | One point is earned for the correct equation. | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------| | i | 224,55 (4.42) | | (iii) Calculate the molar concentration of the $C_2H_5NH_3^+(aq)$ that is formed in the reaction. moles of $$C_2H_5NH_2 = 0.500 L \times \frac{0.500 \text{ mol}}{1.00 L} = 0.250 \text{ mol}$$ moles of $H_3O^+ = 0.500 L \times \frac{0.200 \text{ mol}}{1.00 L} = 0.100 \text{ mol}$ | | $[C_2H_5NH_2]$ | [H ₃ O ⁺] | $[C_2H_5NH_3^+]$ | |---------------|----------------|----------------------------------|------------------| | initial value | 0.250 | 0.100 | ~ 0 | | change | -0.100 | -0.100 | +0.100 | | final value | 0.150 | ~ 0, | 0.100 | $$[C_2H_5NH_3^+] = \frac{0.100 \text{ mol } C_2H_5NH_3^+}{1.00 \text{ L}} = \mathbf{0.100} M$$ One point is earned for the correct number of moles of $C_2H_5NH_2$ and H_3O^+ . One point is earned for the correct concentration. ## AP® CHEMISTRY 2009 SCORING GUIDELINES (Form B) ### Question 1 (continued) (iv) Calculate the value of K_b for $C_2H_5NH_2$. $$[C_2H_5NH_2] = \frac{0.150 \text{ mol } C_2H_5NH_2}{1.00 \text{ L}} = \mathbf{0.150} M$$ $$K_b = \frac{[C_2 H_5 N H_3^+][O H^-]}{[C_2 H_5 N H_2]} = \frac{(0.100)(8.5 \times 10^{-4})}{0.150} = 5.67 \times 10^{-4}$$ One point is earned for the correct calculation of the molarity of C₂H₅NH₂ after neutralization. One point is earned for the correct value.