AP Chemistry			Name		
Topic: Electrochemistry					
Chapter 20 (20 points)			Date		Period
	In the spaces provide low.(2 points each)	d to the left, wri	te in the answe	er that best cor	npletes each
assign oxidati	& 2 refer to the followi	element in the e	quation and bal	lance the equa	tion, if you wish
3. St	oCl ₃ + HCl +	NaBrO ₃	> . 3. SbCl ₅	+NaBr	+ .3. H ₂ O
1. Whi	ch is the oxidizing age b) Br	ent? c) HCl	d) SbCl ₃	e) NaBrO ₃	
2 Which	ch is the coefficient of	ShCl- in the hal	lanced equation	n?	
a) 1	b) 2	c) 3	d) 4	e) 5	
 // ·	-, -		,	-, -	
	3 and 4 consider the + Cu ² +(aq)>			Eo = 1.10 volts	
The above eq	uation refers to the Da	niel cell, a com	mon electroche	mical cell.	(1F = whee-
3. Whic	ch expression gives th	e value for ∆Gº		nis reaction?	(1F = mb e = 76,500
a)	-2 X 8.31 X 1.10	X 1,000	A6° = -1	n FE°	
b)	-2 X 96,500 X 1.1 8.31	<u>0</u>	716		c 10 1
c)	<u>-2 X 96,500 X 1.19</u>	Q Ac	0 = -	2(96,500	C) (1.100)
d)	<u>-2 X 96,500</u> 1.10 X 8.31			/ /	500
e)	-2 X 8.31 X 1.10				

4. Which expression gives the voltage for such a cell at non-standard conditions where [Cu2+] is 1.00 M and [Zn2+] is 0.010 M?

Wand [Zn²⁺] is 0.010 M?

(a)
$$1.10 + 0.0591$$
(b) $1.10 + (0.0591 \times 2)$
(c) $1.10 + 0.0591$
2

d) $(1.10 + 0.0591) \times 2$
(e) $1.10 \times \frac{2}{0.0591}$

5. The diagram below represents a standard Fe²⁺/Fe³⁺ half cell connected to a standard Pb⁰/Pb²⁺ half cell. The electrodes are numbered for the purposes of identification.

Which describes materials used for the construction of the standard Fe²⁺/Fe³⁺ half cell?

- I. The electrode is made of iron metal.
- II. The source of Fe 3 + ions could be Fe(OH)₂.
- III. The source of Fe³⁺ ions could be FeCl₃.

$$Sr(s) + Mg^{2+} \iff Sr^{2+} + Mg(s)$$

Consider the reaction represented above that occurs at 25°C. All reactants and products are in their standard states. The value of the equilibrium constant, K_{eq} , for the reaction is 4.2×10^{17} at 25°C.

- (a) Predict the sign of the standard cell potential, E° , for a cell based on the reaction. Explain your prediction.
- (b) Identify the oxidizing agent for the spontaneous reaction.
- (c) If the reaction were carried out at 60°C instead of 25°C, how would the cell potential change? Justify your answer.
- (d) How would the cell potential change if the reaction were carried out at 25°C with a 1.0-molar solution of Mg(NO₃)₂ and a 0.10-molar solution of Sr(NO₃)₂? Explain.
- (e) When the cell reaction in (d) reaches equilibrium, what is the cell potential?

(E) At Equilibrium, Epell = 0 (+1)

1 4