AP Chemistry Review Targets 1-6

Directions: Answer each of the following questions. Place your answers on the provided blanks. This is an open note quiz.

1. List the conjugate base of CH₃COOH.

____CH3C00-

2. List the conjugate acid of H₂AsO₄-.

1t3 Asoy

Consider the following reaction for Questions 3 and 4:

 $HCO_3^-(aq) + HPO_4^{2-}(aq) \Leftrightarrow H_2CO_3(aq) + PO_4^{3-}(aq)$

3. Identify the acid in the above reaction.

4. Identify the conjugate base in the above reaction.

5. Select all correct answers. According to Arrhenius, an acid is a substance that _____.

a is capable of donating one or more protons ~

(6) causes an increase in the concentration of the H+ ions in solution \checkmark c) can accept a pair of e- to form a coordinate covalent bond not Arrheni-5

d) reacts with the solvent to form a cation formed by the autoionization of water of that solvent not Arrhenius

e) tastes bitter

6. A substance is said to be amphoteric if it is capable of acting as both an acid and a base.

7. In an acidic solution, the $[H_3O^+]$ \geq $[OH^-]$. Fill in the blank with <,>, or =.

8. HSO3*(aq) is an ion which is amphoteric. In the space below, write an equation for the reaction in which HSO₃-(aq) acts as a base in H₂O(I).

 $1450_{2}^{-} + 1_{2}0 \Rightarrow 1_{2}50_{2} + 0H^{-}$

9. In the space below, write an equation for the reaction in which HSO₃-(aq) acts as an acid in H2O(I).

 $450_{2}^{-} + 420 \implies 50_{2}^{2-} + 4_{2}0^{+}$

10. Predict the products of the following reaction:

 $H_3O^+(aq) + F^-(aq) \Leftrightarrow H_2O$

- 11. A solution has [H+] of 0.00032 M. The [OH-] is 3.13×10-11 M and the solution is acidic (acidic, basic, or neutral)
- 12. What is the value for K_w at 25°C? 1×10^{-14}

For #13-23, show your work and then circle your final answers.

13. How many times more acidic is a solution with a pH of 3.00 than a solution with a pH of 5.50?

$$3 \rightarrow 4 \rightarrow 5 \xrightarrow{5} 6$$
 $10 \times 10 \times 5 = 500 \times$

14. If a solution has a pH of 4.52, then its [H+] is 3.02 x 10-5 M.

- 15. If a solution has a pOH of 10.80, its [H+] is 6.31 x 16-4 M.
- 16. If a magnesium hydroxide solution has a [OH-] of 1.00 X 10-11M, then its pH is 3.0b

17. Calculate the pH of a 0.0034 M solution of nitric acid.

18. Calculate the pOH of a solution made by dissolving 2.50 grams of HClO₃ in enough water to make 2.50 L of solution.

pH = -log (.0118) = 1.928

19. Calculate the pH of a solution made by dissolving 14.0 g of strontium hydroxide in enough water to make 3.00 L of solution.

$$\frac{14.09}{3.00L} \times \frac{1 \text{mol } 5r(0H)_2}{121.629} = .0384 \text{ M } \times 2 = .0768 \text{ M} = [0H^-]}{\text{poh} = -log (.0768) = 1.115}$$

$$\text{pH} = 14 - 1.115 = [12.885]$$

$$L.R. \left[2 HC1 \right] + Ca(0 H)_2 \rightarrow 2 H_2 O + CaCl_2$$

Limiting reaction of problem!

Assume that you added 4.73 liters of 1.50 M HCl to 1.80 liters of 2.00 M Ca(OH)2.

What would be the pH of the resulting solution?

L.R.
$$2 \text{HCl} + \text{Ca(OH)}_2 \rightarrow 2 \text{Hz} O + \text{CaCl}_2$$

3.60 mol original

4.73 L x $\frac{1.50 \text{mol}}{\text{L}} \times \frac{2 \text{mol}}{\text{L}} + \frac{1.50 \text{mol}}{\text{L}} \times \frac{2 \text{mol}}{\text{L}} + \frac{1.50 \text{mol}}{\text{L}} \times \frac{2.00 \text{m$

21. Assume you wanted to make 50.0 L of a sodium hydroxide solution that has a pH of $\rho H = 12.19$ 10.00. How many grams of sodium hydroxide would this require? pH = 10.00 so [H] = 1.00x10-10M and [OH-] = 1.00x10-4M

22. What is [H⁺] in a 0.10 M solution of HX, a weak acid, at 25°C?

$$HX \longrightarrow H^+ + X^- \qquad K_A = \underbrace{(H+J(X-J)(K_a \text{ for } HX = 4.0 \times 10^{-11}))}_{f(H,X)}$$

$$50, 4.0 \times 10^{-11} = \frac{\chi^2}{10}$$

$$x = 20 \times 10^{-6} M$$

What is the % ionization of a 3.00 M acetic acid solution at 25°C? For acetic 23. acid the is $K_a = 1.8 \times 10^{-5}$.

$$1.8 \times 10^{-5} = \frac{x^2}{3.00}$$

$$%I = \frac{.00735}{3.00} \times 100$$